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OUTLINE

Back in 1999, Erhard Robert Fernholz introduced
a construction that was both
(i) remarkable, and
(ii) remarkably easy to prove.

He showed that
for a certain class of so-called “functionally- generated” portfolios,
it is possible to express the wealth they generate, discounted by
(denominated in terms of) the total market capitalization, solely in
terms of the individual companies’ market weights
– and to do so in a robust, pathwise, model-free manner, that
does not involve stochastic integration.



This fact can be proved by an application of Itô’s rule.
Once the result is known, its proof can be assigned as a
moderate exercise in a stochastic calculus course.

The discovery paved the way for finding simple, structural
conditions on large equity markets – that involve more than
one stock, and typically thousands – under which it is
possible to outperform the market portfolio (w.p.1).

Put a little differently: conditions under which (strong)
arbitrage relative to the market portfolio is possible.

Bob Fernholz showed also how to implement this
outperformance by simple portfolios – which can be
constructed solely in terms of observable quantities,
without any need to estimate parameters of the
model or to optimize.



Although well-known, celebrated, and quite easy to prove,
Fernholz’s construction has been viewed over the past
18+ years as somewhat “mysterious”.

In this talk, and in the work on which the talk is based,
we hope to help make the result a bit more celebrated and
perhaps a bit less mysterious, via an interpretation of
portfolio-generating functions as Lyapunov functions
for the vector process of relative market weights.

We will try to settle then a question about
functionally-generated portfolios that has been open
for 10 years.



SOME NOTATION

• A probability space (Ω,F ,P) equipped with a
right-continuous filtration F.

• L(X ): class of progressively measurable processes, integrable
with respect to some given vector semimartingale X (·).

• d ∈ N : number of assets in an equity market, at time zero.

• Nonnegative continuous P–semimartingales, representing
the relative market weights of each asset:

µ(·) =
(
µ1(·), · · · , µd(·)

)′
with µ1(0) > 0, · · · , µd(0) > 0 and taking values in the lateral
face of the unit simplex

∆d =

{(
x1, · · · , xd

)′ ∈ [0, 1]d :
d∑

i=1

xi = 1

}
.



STOCHASTIC DISCOUNT FACTORS

• Some results below require the notion of a stochastic discount
factor (“deflator”) for the relative market weight process µ(·).

• A Deflator is a continuous, adapted, strictly positive process
Z (·) with Z (0) = 1 , for which

all products Z (·)µi (·) , i = 1, · · · , d are local martingales.

In particular, Z (·) is a local martingale itself.

• The existence of such a deflator will be invoked explicitly when
needed, and ONLY then.



FROM INTEGRANDS TO TRADING STRATEGIES

• For any given “number-of-shares” process ϑ(·) ∈ L(µ), we
consider its “value”

V ϑ(t) =
d∑

i=1

ϑi (t)µi (t) , 0 ≤ t <∞ .

• We call such ϑ(·) a Trading Strategy, if its “defect of
self-financibility” is identically equal to zero:

Qϑ(T ) := V ϑ(T )− V ϑ(0)−
∫ T

0

〈
ϑ(t), dµ(t)

〉
≡ 0 , T ≥ 0.



• If Qϑ(·) ≡ 0 fails, then ϑ(·) ∈ L(µ) is not a trading strategy.

• However, for any C ∈ R, the vector process defined via

ϕi (·) = ϑi (·)− Qϑ(·) + C , i = 1, · · · , d

IS a trading strategy, and its value is given by

V ϕ(·) = V ϑ(0) +

∫ ·
0

〈
ϑ(t), dµ(t)

〉
+ C .



RELATIVE ARBITRAGE

Definition

A trading strategy ϕ(·) outperforms the market (or is relative
arbitrage with respect to it) over the time horizon [0,T ], if

V ϕ(0) = 1; V ϕ(·) ≥ 0

and

P
(
V ϕ(T ) ≥ 1

)
= 1; P

(
V ϕ(T ) > 1

)
> 0.

• We say that this relative arbitrage is strong, if

P
(
V ϕ(T ) > 1

)
= 1 .



REGULAR FUNCTIONS

Definition
A continuous function G : supp (µ)→ R is said to be Regular for
the process µ(·) , if:

1. There exists a measurable function

DG =
(
D1G , · · · ,DdG

)′
: supp (µ)→ Rd

such that the “generalized gradient” process ϑ(·) with

ϑi (·) = DiG
(
µ(·)

)
, i = 1, · · · , d

belongs to L(µ).

2. The continuous, adapted process ΓG (·) below has finite
variation on compact intervals:

ΓG (T ) := G
(
µ(0)

)
−G
(
µ(T )

)
+

∫ T

0

〈
ϑ(t), dµ(t)

〉
, 0 ≤ T <∞ .



Lyapunov Functions

Definition
We say that a regular function G is a Lyapunov function for the
process µ(·) , if the finite-variation process

ΓG (·) = G
(
µ(0)

)
− G

(
µ(·)

)
+

∫ ·
0

〈
DG
(
µ(t)

)
, dµ(t)

〉
is actually non-decreasing.

Definition
We say that a regular function G is Balanced for µ(·) , if

G
(
µ(t)

)
=

d∑
j=1

µj(t)DjG
(
µ(t)

)
, 0 ≤ t <∞.

The geometric mean M(x) =
(
x1 · · · xn

)1/n
is an example.



Remark: On Terminology.
To wrap our minds around this terminology, assume that the
vector process ϑ(·) = DG (µ(·)) is locally orthogonal to the
random motion of the market weights µ(·) , in the sense that∫ ·

0

〈
ϑ(t),dµ(t)

〉
≡
∫ ·
0

〈
DG (µ(t)),dµ(t)

〉
≡ 0 .

Then the Lyapunov property posits that

G
(
µ(·)

)
= G

(
µ(0)

)
− ΓG (·)

is a decreasing process: the classical definition.

. More generally, let us assume that Z (·) is a deflator,
and that G ≥ 0 is a Lyapunov function, for the process µ(·).
Then Z (·)G (µ(·)) is a P–supermartingale.



Examples of Regular and Lyapunov functions

Example

If G is of class C2 in a neighborhood of ∆d , Itô’s formula yields

ΓG (·) =
1

2

d∑
i=1

d∑
j=1

∫ ·
0

(
− D2

ijG
(
µ(t)

))
d
〈
µi , µj

〉
(t)

Therefore, such a function G is regular;
if it is also concave, then G becomes a Lyapunov function.

Significance: an “aggregate cumulative measure of total variation” for
the entire market, with the Hessian (“curvature”)

−D2G (µ(t))

acting as the “aggregator” at time t.



Remark: The process ΓG (·):

(i) May, in general, depend on the choice of DG ; it does NOT,
i.e., is uniquely determined, if a deflator Z (·) exists for µ(·).

(iii) Takes the form of the excess growth rate of the market
portfolio, or of “cumulative average relative variation of the
market”

ΓH(·) =
1

2

d∑
j=1

∫ ·
0
µj(t) d

〈
logµj

〉
(t) ,

when G = H is the Gibbs/Shannon entropy function.

We ran into this quantity several times in yesterday’s talk.



CONCAVE FUNCTIONS ARE LYAPUNOV

Theorem
A continuous function G : supp (µ)→ R is Lyapunov, if it
can be extended to a continuous, concave function on the set

1. ∆d
+ := ∆d ∩ (0, 1)d and

P
(
µ(t) ∈∆d

+ , ∀ t ≥ 0
)

= 1;

2.

{(
x1, · · · , xd

)′ ∈ Rd :
∑d

i=1 xi = 1

}
3. ∆d , and there exists a deflator Z (·) for µ(·).

. Some interesting Stochastic Analysis is involved here.

Remark: The existence of a deflator is not needed, if µ(·) has strictly

positive components at all times; it is essential, however, when µ(·) is

“allowed to hit a boundary”. Preservation of semimartingale property...



FUNCTIONS BASED ON RANK

• “Rank operator” R : ∆d →Wd , where

Wd =
{(

x1, · · · , xd
)′ ∈∆d : 1 ≥ x1 ≥ x2 ≥ · · · ≥ xd−1 ≥ xd ≥ 0

}
.

• Process of market weights ranked in descending order, namely

µ(·) = R(µ(·)) =
(
µ(1)(·), · · · , µ(d)(·)

)
.

• Then µ(·) can be interpreted again as a market model.
(However, this new process may not admit a deflator, even when

the original one does.)

Theorem
Consider a function G : supp (µ)→ R, which is regular for the
ranked market weights µ(·). Then the composite G = G ◦R
is a regular function for the original market weights µ(·).



. Functionally Generated Strategies (Additive Case)

For a regular function G , consider the trading strategy ϕ(·) with

ϕi (t) = DiG (µ(t))− Qϑ(t) + C , i = 1, · · · , d , 0 ≤ t <∞

where ϑ(t) := DG (µ(t)) and

C := G
(
µ(0)

)
−

d∑
j=1

µj(0)DjG
(
µ(0)

)
is the “Defect of Balance” at time t = 0.

Definition
We say that this trading strategy ϕ(·) is additively generated
by the regular function G .



Proposition

The components of the trading strategy ϕ(·) with

ϕi (t) = DiG (µ(t))− Qϑ(t) + C

from the previous slide, can be written equivalently as

ϕi (t) = DiG (µ(t)) + ΓG (t) +

(
G
(
µ(t)

)
−

d∑
j=1

µj(t)DjG
(
µ(t)

))

for i = 1, · · · , d ;
and the corresponding value (wealth) process is given by

Vϕ(t) = G
(
µ(t)

)
+ ΓG (t) , 0 ≤ t <∞.

Expressions are completely free of stochastic integrals.



Remark: Not quite a Doob-Meyer decomposition, this

Vϕ(t) = G
(
µ(t)

)
+ ΓG (t) , 0 ≤ t <∞,

but pretty darn close.

Think of it as an
“Additive Regular (resp., Lyapunov) Decomposition”.

It consists of
(i) a term G (µ(t)) with controlled behavior, that depends on each
day t on the prevailing configuration µ(t) of market weights and
on nothing else; and of
(ii) an additional “earnings” term, path-dependent and of finite
variation (resp., increasing)

ΓG (·) = − 1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t) .



OK, we have derived a trading strategy, additively generated from
the function G . Its value process is also additively decomposed as

Vϕ(T ) = G
(
µ(T )

)
+ ΓG (T ) , 0 ≤ T <∞

in terms of “value” and “earnings”.

. But how about the multiplicative (log-additive) decomposition of
the “Master Equation” type

logVψ(T ) = logG
(
µ(T )

)
+

∫ T

0

dΓG (t)

G
(
µ(t)

)
with

ΓG (·) = − 1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t)

from yesterday? Integrating factor....



. Functionally Generated Strategies (Multiplicative Case)
For a regular function G > 0 such that 1/G (µ(·)) is locally
bounded, consider the integrand in L(µ) given as

ηi (·) := ϑi (·)× exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

))

= DiG (µ(·))× exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

))
and the trading strategy ψ(·) with components

ψi (·) = η(·)− Qη(·) + C , i = 1, · · · , d

and with

C = G
(
µ(0)

)
−

d∑
j=1

µj(0)DjG
(
µ(0)

)
.



Definition
We say that the trading strategy ψ(·) is multiplicatively
generated by the regular function G .

Proposition (Fernholz (1999, 2002))

The value process of the strategy ψ(·) is given by

Vψ(T ) = G
(
µ(T )

)
exp

(∫ T

0

dΓG (t)

G
(
µ(t)

)) > 0 , 0 ≤ T <∞.

Remark: Exactly the “Master Equation” from yesterday, as

ΓG (·) = − 1

2

d∑
i=1

d∑
j=1

∫ ·

0

D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t) .

This is an additive regular (resp., Lyapunov) decomposition for the log

logVψ(T ) = logG
(
µ(T )

)
+

∫ T

0

dΓG (t)

G
(
µ(t)

) .



Portfolio Weights

The quantities

ψi (t)µi (t)

Vψ(t)
=

µi (t)

G (µ(t))

DiG (µ(t)) + G
(
µ(t)

)
−

d∑
j=1

µj(t)DjG
(
µ(t)

)
for i = 1, · · · , d are the portfolio weights of the multiplicatively
generated strategy ψ(·) . (Please note the aspect of “G−modulated

delta hedging”, adjusted for possible “lack of balance”.)

They can be shown to be non-negative, when G is concave.

A GENERAL REMARK: Implementing functionally-generated portfolios
in either their additive or multiplicative form, and evaluating their perfor-
mance relative to the market, requires no stochastic integration at all.

(“Robust”, “Pathwise”, “Model-Free”, you name it.)



Functionally Generated Relative Arbitrage (Additive Case)

Theorem
Fix a Lyapunov function G : supp (µ)→ [0,∞) with
G (µ(0)) = 1, and suppose that for some real number T∗ > 0
we have

P
(
ΓG (T∗) > 1

)
= 1.

Then the strategy ϕ(·), additively generated from G , strongly out-
performs the market over every time-horizon [0,T ] with T ≥ T∗.

Proof:
Vϕ(T ) = G

(
µ(T )

)
+ ΓG (T ) ≥ ΓG (T∗) > 1

hold w.p.1.



Functionally Generated Arbitrage (Multiplicative Case)

Theorem
Fix a regular function G : supp (µ)→ [0,∞) satisfying
G (µ(0)) = 1, and suppose that for some real constants
T∗ > 0 and ε > 0 we have

P
(
ΓG (T∗) ≥ 1 + ε

)
= 1 .

Then there exists a constant c > 0 such that the trading strategy
ψ(c)(·), multiplicatively generated as above by the regular function

G (c) =
G + c

1 + c
,

strongly outperforms the market over the time-horizon [0,T∗].

. If in addition G is a Lyapunov function, then this holds also
over every time-horizon [0,T ] with T ≥ T∗.



Theorem
Fix a regular function G : supp (µ)→ [0,∞), and suppose that
there exists a constant η > 0 , such that a.s.

ΓG (T ) ≥ ηT , 0 ≤ T <∞ . (1)

Then strong relative arbitrage is possible with respect to the
market portfolio over any time horizon [0,T ] of sufficiently long,
finite duration, namely

T > T∗ :=
G
(
µ(0)

)
η

.

Moral: “Initial market configurations with G (µ(0)) very close to zero,

are the most propitious for launching strong relative arbitrage”. More

about this shortly.



EXAMPLE: ENTROPY FUNCTION

• Consider the (nonnegative) Gibbs/Shannon entropy

H(x) =
d∑

j=1

xj log

(
1

xj

)
.

• Assuming either that µ(·) ∈∆d
+, or the existence of a deflator

Z (·), this H is a Lyapunov function with nondecreasing

ΓH(·) =
1

2

d∑
j=1

∫ ·
0
µj(t) d

〈
logµj

〉
(t)

the so-called cumulative excess growth of the market.

• If for some real constant η > 0 we have

P
(
ΓH(t) ≥ η t , ∀ t ≥ 0

)
= 1

then strong relative arbitrage with respect to the market exists
over any time-horizon [0,T ] with T > H(µ(0)) /η .



Cumulative excess growth of the market
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Figure: Cumulative Excess Growth ΓH(·) for the U.S. Equity Market,
during the period 1926 –1999.



Sufficient Intrinsic Volatility

Recall:

ΓH(·) =
1

2

d∑
j=1

∫ ·
0
µj(t) d

〈
logµj

〉
(t) ;

P
(d
dt

ΓH(t) ≥ η , ∀ t ≥ 0
)

= 1.

This condition posits that there exists “sufficient intrinsic
volatility” in the market, as measured via the average – by
capitalization weight – relative local variation rate

d∑
j=1

µj(t)
d

dt

〈
logµj

〉
(t)

of the individual stocks.



• Under this a.s. condition

d∑
j=1

µj(t)
d

dt

〈
logµj

〉
(t) ≥ η , ∀ t ≥ 0 ,

relative arbitrage with respect to the market is possible over
any time-horizon [0,T ] with

T >
H(µ(0))

η
;

and can be realized by a unique (additively generated) trading
strategy, the same for all such horizons.



An Old Question

In Fernholz & K. (2005) we asked, whether such relative
arbitrage is then possible over arbitrary time horizons.
It was then shown that the answer is affirmative in a couple of
important special cases (“volatility stabilized” markets, and
“diverse” strictly non-degenerate markets).

We know now, that the answer to this question is affirmative, if
d = 2 (two assets); and that the relative arbitrage thus generated
is, in fact, strong.

We also know via a host of counterexamples, that already with
d = 3 (three assets) the answer to this question is, in general,
NEGATIVE.

. Under appropriate additional conditions, however, the answer
turns affirmative again. Let’s discuss some of them.



SHORT-TERM RELATIVE ARBITRAGE

Theorem (Support): Suppose that for some Lyapunov function
G and real constant η > 0 we have, not only the non-decrease of
the process

ΓG (T ) − ηT , T ∈ (0,∞); (2)

but also, for some real constant g ≥ 0 with

G (µ(·)) ≥ g ,

the additional “time-homogeneous-support” condition

P
(
G
(
µ(·)

)
visits (g , g + ε) during [0,T ]

)
> 0 , ∀ (T , ε) ∈ (0,∞)2 .

Then relative arbitrage with respect to the market can be realized
over ANY time-horizon [0,T ] with T ∈ (0,∞) .



IDEA: If you can arrive “fast” and with positive probability at some point
in the state-space which is “propitious” for relative arbitrage, then you
already have realized short-term relative arbitrage.

However, this relative arbitrage need not be strong.



Corollary (Failure of Diversity): Suppose that diversity fails
for the market with relative weights µ(·), in the sense that

P
(

sup
t∈[0,T )

max
1≤i≤d

µi (t) > 1− δ
)
> 0 , ∀ (T , δ) ∈ (0,∞)× (0, 1).

Suppose also that, for some regular function G : ∆d → [0,∞) with

G (ei ) = min
x∈∆d

G (x) for each i = 1, · · · , d ,

the condition in (2) holds for some constant η > 0 : the process

ΓG (T ) − ηT , T ∈ (0,∞)

is non-decreasing. Relative arbitrage with respect to the market
exists then over every time horizon [0,T ] of finite length T > 0.



THEOREM (Strict Non-Degeneracy): Suppose that
(i) the d − 1 largest eigenvalues of the matrix-valued process

αij(t) :=
d〈µi , µj〉(t)

d
(∑

k〈µk〉(t)
) ; 1 ≤ i , j ≤ d , 0 ≤ t <∞

are bounded away from zero, uniformly in (t, ω);
(ii) a deflator exists for the process µ(·) of relative market weights;
(iii) for some regular function G , the process

ΓG (T ) − ηT , T ∈ (0,∞)

is non-decreasing.
Relative arbitrage with respect to the market exists then over every
time horizon [0,T ] of finite length T > 0.

. Some quite interesting Probability Theory goes into this proof: support

theorem, growth of stochastic integrals. Once again: no strength.



COUNTEREXAMPLES TO THE 2005 QUESTION

THEOREM: There exist time-homogeneous Itô diffusions µ(·)
with values in ∆3

+ and Lipschitz–continuous dispersion matrix,
for which the cumulative excess growth process

ΓH(·) :=
1

2

3∑
i=1

∫ ·
0

d
〈
µi
〉
(t)

µi (t)
=

1

2

3∑
j=1

∫ ·
0
µj(t)d

〈
logµj

〉
(t)

is strictly increasing, with slope uniformly bounded from
below by a strictly positive constant η > 0.

. But with respect to which arbitrage over sufficiently short time-
horizons [0,T ], with 0 < T ≤ T[ for some real number

T[ ∈
(

0,
H(µ(0))

η

]
,

is NOT possible.



A GAP in our Understanding

We know of course that (strong) arbitrage DOES exist, over all
time-horizons [0,T ] with

T >
H(µ(0))

η
.

This leaves a GAP for time-horizons [0,T ] with

T[ < T ≤ H(µ(0))

η
.

We are now trying to understand what happens for such horizons,
and hopefully “close the gap”.



Sketch of the Argument

Consider a strict concave, smooth function G : ∆3
+ → (0,∞),

introduce the “cyclical” functions σi (x) = Di+1G (x)− Di−1G (x)
for i = 1, 2, 3 and set

L(x) := −
(
1/2
)
σ′(x)D2G (x)σ(x) .

If G has a “navel” c, that is, a point with the property

D1G (c) = D2G (c) = D3G (c),

then this c is also a global maximum. Away from this navel, we
start an Itô diffusion µ = (µ1, µ2, µ3) with dynamics

dµi (t) =
σi (µ(t))√
L
(
µ(t)

) dW (t) , i = 1, 2, 3 .

Here W (·) is a standard, one-dimensional Brownian motion.



This diffusion lives on the lateral face of the unit simplex, and
moves along level curves of the function G at unit speed (η = 1):

G
(
µ(t)

)
= G

(
µ(0)

)
− t , ΓG (t) = t ,

(at least) up until the first time D one of its components
vanishes. It follows that

G
(
µ(0)

)
− g ≤ D = G

(
µ(0)

)
− G

(
µ(D)

)
≤ G

(
µ(0)

)
,

g := sup
x∈∆3\∆3

+

G (x).

The components of this market weight process µ(·) are
martingales, so no arbitrage can exist relative to this market
on any time-horizon [0,T ] with

0 < T ≤ T[ := G
(
µ(0)

)
− g .



Of course, strong relative arbitrage IS possible over any
time-horizon [0,T ] with T ∈

(
G (µ(0),∞

)
.

Thus the gap in question, is the interval(
G
(
µ(0)

)
− g,G

(
µ(0)

)]
where

g := max
x∈∆3\∆3

+

G (x).

For instance, with G = H the entropy function, we have

max
x∈∆3

G (x) = 3 log 3, max
x∈∆3\∆3

+

G (x) = 2 log 2 .

No such gap exists for concave functions G : ∆3 → [0,∞) that are

strictly positive in the interior of the simplex and vanish on its boundary;

e.g., the geometric mean function.
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