Trading Strategies Generated by Lyapunov Functions

IOANNIS KARATZAS

Columbia University, New York and INTECH, Princeton

Joint work with E. Robert FERNHOLZ and Johannes RUF

Talk at ICERM Workshop, Brown University June 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

OUTLINE

Back in 1999, Erhard Robert FERNHOLZ introduceda construction that was both(i) remarkable, and(ii) remarkably easy to prove.

He showed that

for a certain class of so-called "functionally- generated" portfolios, it is possible to express the wealth they generate, discounted by (denominated in terms of) the total market capitalization, solely in terms of the individual companies' *market weights*

- and to do so in a robust, pathwise, model-free manner, that *does not involve stochastic integration.*

This fact can be proved by an application of $IT\hat{O}$'s rule. Once the result is known, its proof can be assigned as a moderate exercise in a stochastic calculus course.

The discovery paved the way for finding simple, structural conditions on *large* equity markets – that involve more than one stock, and typically thousands – under which it is possible to outperform the market portfolio (w.p.1).

Put a little differently: conditions under which (strong) arbitrage relative to the market portfolio is possible.

Bob FERNHOLZ showed also how to implement this outperformance by simple portfolios – which can be constructed solely in terms of observable quantities, without *any* need to estimate parameters of the model or to optimize. Although well-known, celebrated, and quite easy to prove, FERNHOLZ's construction has been viewed over the past 18+ years as somewhat "mysterious".

In this talk, and in the work on which the talk is based, we hope to help make the result a bit more celebrated and perhaps a bit less mysterious, via an interpretation of portfolio-generating functions as LYAPUNOV functions for the vector process of relative market weights.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We will try to settle then a question about functionally-generated portfolios that has been open for 10 years.

SOME NOTATION

- A probability space (Ω, 𝒴, ℙ) equipped with a right-continuous filtration 𝔅.
- $\mathcal{L}(X)$: class of progressively measurable processes, integrable with respect to some given vector semimartingale $X(\cdot)$.
- $d \in \mathbb{N}$: number of assets in an equity market, at time zero.
- **Nonnegative** continuous P-semimartingales, representing the relative market weights of each asset:

$$\mu(\cdot) = (\mu_1(\cdot), \cdots, \mu_d(\cdot))'$$

with $\mu_1(0) > 0, \cdots, \mu_d(0) > 0$ and taking values in the lateral face of the unit simplex

$$\Delta^d = \left\{ \left(x_1, \cdots, x_d \right)' \in [0, 1]^d : \sum_{i=1}^d x_i = 1 \right\}.$$

STOCHASTIC DISCOUNT FACTORS

- Some results below require the notion of a stochastic discount factor ("deflator") for the relative market weight process $\mu(\cdot)$.
- A **Deflator** is a continuous, adapted, strictly positive process $Z(\cdot)$ with Z(0) = 1, for which

all products $Z(\cdot) \mu_i(\cdot)$, $i = 1, \dots, d$ are local martingales.

In particular, $Z(\cdot)$ is a local martingale itself.

• The existence of such a deflator will be invoked explicitly when needed, and ONLY then.

FROM INTEGRANDS TO TRADING STRATEGIES

For any given "number-of-shares" process ϑ(·) ∈ ℒ(μ), we consider its "value"

$$V^artheta(t)\,=\,\sum_{i=1}^d\,artheta_i(t)\,\mu_i(t)\,,\qquad 0\leq t<\infty\,.$$

 We call such ϑ(·) a Trading Strategy, if its "defect of self-financibility" is identically equal to zero:

$$Q^artheta(\mathcal{T}) \, := \, V^artheta(\mathcal{T}) - V^artheta(0) - \int_0^\mathcal{T} ig\langle artheta(t), \mathrm{d}\mu(t) ig
angle \, \equiv \, 0 \,, \quad \mathcal{T} \geq 0.$$

- If $Q^{\vartheta}(\cdot) \equiv 0$ fails, then $\vartheta(\cdot) \in \mathcal{L}(\mu)$ is not a trading strategy.
- However, for any $\boldsymbol{\mathcal{C}} \in \mathbb{R}$, the vector process defined via

$$\varphi_i(\cdot) = \vartheta_i(\cdot) - Q^{\vartheta}(\cdot) + \boldsymbol{C}, \qquad i = 1, \cdots, d$$

IS a trading strategy, and its value is given by

$$V^{arphi}(\cdot) \ = \ V^{artheta}(0) + \int_{0}^{\cdot} ig\langle artheta(t), \mathrm{d}\mu(t) ig
angle + oldsymbol{\mathcal{C}} \ .$$

RELATIVE ARBITRAGE

Definition

A trading strategy $\varphi(\cdot)$ outperforms the market (or is relative arbitrage with respect to it) over the time horizon [0, T], if

$$V^arphi(0)=1; \qquad V^arphi(\cdot)\,\geq\, 0$$

and

$$\mathbb{P}\Big(V^{\varphi}(T) \ge 1\Big) = 1; \qquad \mathbb{P}\Big(V^{\varphi}(T) > 1\Big) > 0.$$

• We say that this relative arbitrage is strong, if

$$\mathbb{P}\Big(V^{\varphi}(T) > 1\Big) = 1.$$

REGULAR FUNCTIONS

Definition

A continuous function $G : \operatorname{supp}(\mu) \to \mathbb{R}$ is said to be **Regular** for the process $\mu(\cdot)$, if:

1. There exists a measurable function

$$\mathsf{D}\mathsf{G} = ig(\mathsf{D}_1\mathsf{G},\cdots,\mathsf{D}_d\mathsf{G}ig)': extsf{supp}\left(\mu
ight) o \mathbb{R}^d$$

such that the "generalized gradient" process $artheta(\cdot)$ with

$$\boldsymbol{\vartheta}_i(\cdot) = D_i G(\mu(\cdot)), \qquad i = 1, \cdots, d$$

belongs to $\mathcal{L}(\mu)$.

The continuous, adapted process Γ^G(·) below has finite variation on compact intervals:

$$\Gamma^{G}(T) := G(\mu(0)) - G(\mu(T)) + \int_{0}^{T} \langle \vartheta(t), \mathrm{d}\mu(t) \rangle, \quad 0 \leq T < \infty.$$

LYAPUNOV Functions

Definition

We say that a regular function G is a Lyapunov function for the process $\mu(\cdot)$, if the finite-variation process

$$\Gamma^{G}(\cdot) = G(\mu(0)) - G(\mu(\cdot)) + \int_{0}^{\cdot} \langle DG(\mu(t)), \mathrm{d}\mu(t) \rangle$$

is actually non-decreasing.

Definition

We say that a regular function G is **Balanced** for $\mu(\cdot)$, if

$$Gig(\mu(t)ig) = \sum_{j=1}^d \, \mu_j(t) \, D_j Gig(\mu(t)ig) \,, \qquad 0 \leq t < \infty.$$

The geometric mean $M(x) = (x_1 \cdots x_n)^{1/n}$ is an example.

Remark: On Terminology.

To wrap our minds around this terminology, assume that the vector process $\vartheta(\cdot) = DG(\mu(\cdot))$ is locally orthogonal to the random motion of the market weights $\mu(\cdot)$, in the sense that

$$\int_0^{\cdot} \left\langle artheta(t), \mathrm{d}\mu(t)
ight
angle \equiv \int_0^{\cdot} \left\langle DG(\mu(t)), \mathrm{d}\mu(t)
ight
angle \equiv 0$$
 .

Then the LYAPUNOV property posits that

$$G(\mu(\cdot)) = G(\mu(0)) - \Gamma^{G}(\cdot)$$

is a decreasing process: the classical definition.

. More generally, let us assume that $Z(\cdot)$ is a deflator, and that $G \ge 0$ is a LYAPUNOV function, for the process $\mu(\cdot)$. Then $Z(\cdot)G(\mu(\cdot))$ is a \mathbb{P} -supermartingale.

Examples of Regular and LYAPUNOV functions

Example

If G is of class C^2 in a neighborhood of Δ^d , ITÔ's formula yields

$$\Gamma^{G}(\cdot) = rac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}\int_{0}^{\cdot}\left(-D_{ij}^{2}G(\mu(t))
ight)\mathrm{d}\langle\mu_{i},\mu_{j}
angle(t)$$

Therefore, such a function G is regular; if it is also **concave**, then G becomes a LYAPUNOV function.

Significance: an "aggregate cumulative measure of total variation" for the entire market, with the Hessian ("curvature")

 $-D^2G(\mu(t))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

acting as the "aggregator" at time t.

Remark: The process $\Gamma^{G}(\cdot)$:

(i) May, in general, depend on the choice of DG; it does NOT, i.e., is *uniquely determined*, if a deflator $Z(\cdot)$ exists for $\mu(\cdot)$. (iii) Takes the form of the excess growth rate of the market portfolio, or of "cumulative average relative variation of the market"

$$\Gamma^{H}(\cdot) = rac{1}{2} \sum_{j=1}^{d} \int_{0}^{\cdot} \mu_{j}(t) \,\mathrm{d}\big\langle \log \mu_{j} \big\rangle(t) \,,$$

when G = H is the GIBBS/SHANNON entropy function.

We ran into this quantity several times in yesterday's talk.

CONCAVE FUNCTIONS ARE LYAPUNOV

Theorem

A continuous function $G : \text{supp}(\mu) \to \mathbb{R}$ is LYAPUNOV, if it can be extended to a continuous, concave function on the set

1.
$$\Delta^d_+ := \Delta^d \cap (0, 1)^d$$
 and
 $\mathbb{P}(\mu(t) \in \Delta^d_+, \quad \forall \ t \ge 0) = 1;$
2. $\left\{ (x_1, \cdots, x_d)' \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1 \right\}$
3. Δ^d , and there exists a deflator $Z(\cdot)$ for $\mu(\cdot)$.

. Some interesting Stochastic Analysis is involved here.

Remark: The existence of a deflator is not needed, if $\mu(\cdot)$ has strictly positive components at all times; it is essential, however, when $\mu(\cdot)$ is "allowed to hit a boundary". Preservation of semimartingale property...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FUNCTIONS BASED ON RANK

- "Rank operator" $\mathfrak{R}: \mathbf{\Delta}^d
ightarrow \mathbb{W}^d$, where

$$\mathbb{W}^d = \Big\{ \big(x_1, \cdots, x_d\big)' \in \mathbf{\Delta}^d : 1 \ge x_1 \ge x_2 \ge \cdots \ge x_{d-1} \ge x_d \ge 0 \Big\}.$$

· Process of market weights ranked in descending order, namely

$$\boldsymbol{\mu}(\cdot) = \mathfrak{R}(\boldsymbol{\mu}(\cdot)) = (\boldsymbol{\mu}_{(1)}(\cdot), \cdots, \boldsymbol{\mu}_{(d)}(\cdot)).$$

 Then μ(·) can be interpreted again as a market model. (However, this new process may not admit a deflator, even when the original one does.)

Theorem

Consider a function \mathbf{G} : supp $(\mu) \to \mathbb{R}$, which is regular for the ranked market weights $\mu(\cdot)$. Then the composite $G = \mathbf{G} \circ \mathfrak{R}$ is a regular function for the original market weights $\mu(\cdot)$.

. Functionally Generated Strategies (Additive Case)

For a regular function G , consider the trading strategy $arphi(\cdot)$ with

$$arphi_i(t) = egin{array}{c} D_i G(\mu(t)) - Q^artheta(t) + oldsymbol{\mathcal{C}}\,, \ i=1,\cdots,d, \ 0\leq t<\infty \end{array}$$

where $artheta(t) := DG(\mu(t))$ and

$$\boldsymbol{C} := G(\mu(0)) - \sum_{j=1}^{d} \mu_j(0) D_j G(\mu(0))$$

is the "Defect of Balance" at time t = 0.

Definition

We say that this trading strategy $\varphi(\cdot)$ is **additively generated** by the regular function *G*.

Proposition

The components of the trading strategy $\varphi(\cdot)$ with

$$arphi_i(t) = {\it D}_i {\it G}(\mu(t)) - {\it Q}^artheta(t) + {\it C}$$

from the previous slide, can be written equivalently as

$$\varphi_i(t) = D_i G(\mu(t)) + \Gamma^G(t) + \left(G(\mu(t)) - \sum_{j=1}^d \mu_j(t) D_j G(\mu(t)) \right)$$

for $i = 1, \dots, d$; and the corresponding value (wealth) process is given by

 $V^{\varphi}(t) = G(\mu(t)) + \Gamma^{G}(t), \qquad 0 \leq t < \infty.$

Expressions are completely free of stochastic integrals.

Remark: Not quite a DOOB-MEYER decomposition, this

 $V^{arphi}(t) = G(\mu(t)) + \Gamma^{G}(t), \qquad 0 \leq t < \infty,$

but pretty darn close.

Think of it as an *"Additive Regular* (resp., LYAPUNOV) *Decomposition"*.

It consists of

(i) a term $G(\mu(t))$ with controlled behavior, that depends on each day t on the prevailing configuration $\mu(t)$ of market weights **and on nothing else;** and of

(ii) an additional "earnings" term, path-dependent and of finite variation (resp., increasing)

$$\Gamma^{G}(\cdot) = -rac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}\int_{0}^{\cdot}D_{ij}^{2}G(\mu(t))\,\mathrm{d}\langle\mu_{i},\mu_{j}
angle(t)\,.$$

OK, we have derived a trading strategy, additively generated from the function G. Its value process is also additively decomposed as

$V^{\varphi}(T) = G(\mu(T)) + \Gamma^{G}(T), \qquad 0 \le T < \infty$

in terms of "value" and "earnings".

. But how about the multiplicative (log-additive) decomposition of the "Master Equation" type

$$\log V^{\psi}(T) = \log G(\mu(T)) + \int_0^T \frac{\mathrm{d}\Gamma^G(t)}{G(\mu(t))}$$

with

$$\Gamma^{G}(\cdot) = -\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{0}^{\cdot} D_{ij}^{2} G(\mu(t)) \,\mathrm{d}\langle \mu_{i}, \mu_{j} \rangle(t)$$

from yesterday? Integrating factor....

. Functionally Generated Strategies (Multiplicative Case)

For a regular function G > 0 such that $1/G(\mu(\cdot))$ is locally bounded, consider the integrand in $\mathcal{L}(\mu)$ given as

$$\eta_i(\cdot) := \vartheta_i(\cdot) \times \exp\left(\int_0^{\cdot} \frac{\mathrm{d}\Gamma^G(t)}{G(\mu(t))}\right)$$
$$= D_i G(\mu(\cdot)) \times \exp\left(\int_0^{\cdot} \frac{\mathrm{d}\Gamma^G(t)}{G(\mu(t))}\right)$$

and the trading strategy $\psi(\cdot)$ with components

$$\psi_i(\cdot) = \eta(\cdot) - Q^{\eta}(\cdot) + \boldsymbol{C}, \qquad i = 1, \cdots, d$$

and with

$$C = G(\mu(0)) - \sum_{j=1}^{d} \mu_j(0) D_j G(\mu(0)).$$

Definition

We say that the trading strategy $\psi(\cdot)$ is **multiplicatively** generated by the regular function *G*.

Proposition (FERNHOLZ (1999, 2002))

The value process of the strategy $\psi(\cdot)$ is given by

$$V^{\psi}(T) = G(\mu(T)) \exp\left(\int_0^T rac{\mathrm{d}\Gamma^G(t)}{G(\mu(t))}
ight) > 0\,, \qquad 0 \leq T < \infty.$$

Remark: Exactly the "Master Equation" from yesterday, as

$$\Gamma^{\mathcal{G}}(\cdot) = -rac{1}{2}\sum_{i=1}^d\sum_{j=1}^d\int_0^\cdot D_{ij}^2 \mathcal{G}ig(\mu(t)ig)\,\mathrm{d}ig\langle\mu_i,\mu_jig
angle(t)\,.$$

This is an additive regular (resp., LYAPUNOV) decomposition for the log

$$\log V^{\psi}(T) = \log G(\mu(T)) + \int_0^T \frac{\mathrm{d}\Gamma^G(t)}{G(\mu(t))}.$$

Portfolio Weights

The quantities

$$\frac{\psi_i(t)\mu_i(t)}{V^{\psi}(t)} = \frac{\mu_i(t)}{G(\mu(t))} \left[D_i G(\mu(t)) + G(\mu(t)) - \sum_{j=1}^d \mu_j(t) D_j G(\mu(t)) \right]$$

for $i = 1, \dots, d$ are the **portfolio weights** of the multiplicatively generated strategy $\psi(\cdot)$. (Please note the aspect of "*G*-modulated delta hedging", adjusted for possible "lack of balance".)

They can be shown to be non-negative, when G is concave.

A GENERAL REMARK: Implementing functionally-generated portfolios in either their additive or multiplicative form, and evaluating their performance relative to the market, *requires no stochastic integration at all.* ("Robust", "Pathwise", "Model-Free", you name it.)

Functionally Generated Relative Arbitrage (Additive Case)

Theorem

Fix a LYAPUNOV function G : supp $(\mu) \rightarrow [0, \infty)$ with $G(\mu(0)) = 1$, and suppose that for some real number $T_* > 0$ we have

 $\mathbb{P}\big(\mathsf{\Gamma}^{\mathsf{G}}(\mathcal{T}_*)>1\big)=1.$

Then the strategy $\varphi(\cdot)$, additively generated from *G*, strongly outperforms the market over **every** time-horizon [0, *T*] with $T \ge T_*$.

Proof:

$$V^{\varphi}(T) = G(\mu(T)) + \Gamma^{G}(T) \ge \Gamma^{G}(T_{*}) > 1$$

hold w.p.1.

Functionally Generated Arbitrage (Multiplicative Case)

Theorem

Fix a regular function G : supp $(\mu) \rightarrow [0, \infty)$ satisfying $G(\mu(0)) = 1$, and suppose that for some real constants $T_* > 0$ and $\varepsilon > 0$ we have

$$\mathbb{P}\big(\mathsf{\Gamma}^{\mathsf{G}}(\mathsf{T}_*) \geq 1 + \varepsilon\big) = 1 \,.$$

Then there exists a constant c > 0 such that the trading strategy $\psi^{(c)}(\cdot)$, multiplicatively generated as above by the regular function

$$G^{(c)}\,=\,rac{G+c}{1+c}\,,$$

strongly outperforms the market over the time-horizon $[0, T_*]$.

. If in addition G is a LYAPUNOV function, then this holds also over every time-horizon [0, T] with $T \ge T_*$.

Theorem

Fix a regular function G : supp $(\mu) \rightarrow [0, \infty)$, and suppose that there exists a constant $\eta > 0$, such that a.s.

$$\Gamma^{G}(T) \geq \eta T, \qquad 0 \leq T < \infty. \tag{1}$$

Then strong relative arbitrage is possible with respect to the market portfolio over any time horizon [0, T] of sufficiently long, finite duration, namely

$$T > T_* := \frac{G(\mu(0))}{\eta}.$$

Moral: "Initial market configurations with $G(\mu(0))$ very close to zero, are the most propitious for launching strong relative arbitrage". More about this shortly.

EXAMPLE: ENTROPY FUNCTION

• Consider the (nonnegative) GIBBS/SHANNON entropy

$$H(x) = \sum_{j=1}^{d} x_j \log\left(\frac{1}{x_j}\right)$$

• Assuming either that $\mu(\cdot) \in \Delta^d_+$, or the existence of a deflator $Z(\cdot)$, this H is a LYAPUNOV function with nondecreasing

$$\Gamma^{H}(\cdot) = rac{1}{2} \sum_{j=1}^{d} \int_{0}^{\cdot} \mu_{j}(t) \,\mathrm{d}\big\langle \log \mu_{j} \big
angle(t) \,\mathrm{d}$$

the so-called cumulative excess growth of the market.

• If for some real constant $\eta > 0$ we have

$$\mathbb{P}\left(\Gamma^{H}(t) \geq \eta t, \ \forall \ t \geq 0\right) = 1$$

then strong relative arbitrage with respect to the market exists over any time-horizon [0, T] with $T > H(\mu(0)) / \eta$.

Cumulative excess growth of the market

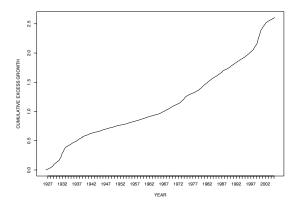


Figure: Cumulative Excess Growth $\Gamma^{H}(\cdot)$ for the U.S. Equity Market, during the period 1926 –1999.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Sufficient Intrinsic Volatility

Recall:

$$egin{aligned} \Gamma^{\mathcal{H}}(\cdot) &= rac{1}{2} \sum_{j=1}^d \int_0^\cdot \mu_j(t) \,\mathrm{d}ig\langle \log \mu_j ig
angle(t) \,\mathrm{d} arphi \,\mathrm{log}\,\mu_j \,\mathrm{log}\,\mu_j \,\mathrm{d} arphi \,\mathrm{log}\,\mu_j \,\mathrm{log}$$

This condition posits that there exists "sufficient intrinsic volatility" in the market, as measured via the average – by capitalization weight – relative local variation rate

$$\sum_{j=1}^{d} \mu_j(t) \frac{\mathrm{d}}{\mathrm{d}t} \langle \log \mu_j \rangle(t)$$

of the individual stocks.

• Under this a.s. condition

$$\sum_{j=1}^d \mu_j(t) \frac{\mathrm{d}}{\mathrm{d}t} \langle \log \mu_j
angle(t) \geq \eta \,, \qquad orall \, t \geq 0 \,,$$

relative arbitrage with respect to the market is possible over any time-horizon [0, T] with

$$T>rac{H(\mu(0))}{\eta}$$
 ;

and can be realized by a unique (additively generated) trading strategy, the same for all such horizons.

(日) (日) (日) (日) (日) (日) (日) (日)

An Old Question

In FERNHOLZ & K. (2005) we asked, whether such relative arbitrage is then possible over *arbitrary* time horizons. It was then shown that the answer is affirmative in a couple of important special cases ("volatility stabilized" markets, and "diverse" strictly non-degenerate markets).

We know now, that the answer to this question is affirmative, if d = 2 (two assets); and that the relative arbitrage thus generated is, in fact, strong.

We also know via a host of counterexamples, that already with d = 3 (three assets) the answer to this question is, in general, NEGATIVE.

. Under appropriate **additional** conditions, however, the answer turns affirmative again. Let's discuss some of them.

・ロト・日本・モート モー うへぐ

SHORT-TERM RELATIVE ARBITRAGE

Theorem (Support): Suppose that for some LYAPUNOV function G and real constant $\eta > 0$ we have, not only the non-decrease of the process

$$\Gamma^{G}(T) - \eta T, \quad T \in (0,\infty);$$
(2)

but also, for some real constant $g \ge 0$ with

 $G(\mu(\cdot)) \geq g$,

the additional "time-homogeneous-support" condition

 $\mathbb{P}\left(G(\mu(\cdot)) \text{ visits } (g,g+\varepsilon) \text{ during } [0,T]\right) > 0\,, \quad \forall \, (T,\varepsilon) \in (0,\infty)^2\,.$

Then relative arbitrage with respect to the market can be realized over ANY time-horizon [0, T] with $T \in (0, \infty)$.

IDEA: If you can arrive *"fast" and with positive probability* at some point in the state-space which is "propitious" for relative arbitrage, then you already have realized short-term relative arbitrage.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

However, this relative arbitrage need not be strong.

Corollary (Failure of Diversity): Suppose that diversity fails for the market with relative weights $\mu(\cdot)$, in the sense that

$$\mathbb{P}\bigg(\sup_{t\in[0,T)}\max_{1\leq i\leq d}\mu_i(t)>1-\delta\bigg)>0\,,\quad\forall\ (T,\delta)\in(0,\infty)\times(0,1).$$

Suppose also that, for some regular function ${m G}: {m \Delta}^d o [0,\infty)$ with

$$\boldsymbol{G}(\boldsymbol{\mathfrak{e}}_i) = \min_{x \in \boldsymbol{\Delta}^d} \boldsymbol{G}(x) \qquad \textit{for each} \quad i = 1, \cdots, d,$$

the condition in (2) holds for some constant $\eta > 0$: the process

 $\Gamma^{G}(T) - \eta T$, $T \in (0, \infty)$

is non-decreasing. Relative arbitrage with respect to the market exists then over every time horizon [0, T] of finite length T > 0.

THEOREM (Strict Non-Degeneracy): Suppose that (i) the d-1 largest eigenvalues of the matrix-valued process

$$lpha_{ij}(t) \ := \ rac{\mathrm{d} \langle \mu_i, \mu_j
angle(t)}{\mathrm{d} ig(\sum_k \langle \mu_k
angle(t)ig)}; \qquad 1 \leq i,j \leq d\,, \ \ 0 \leq t < \infty$$

are bounded away from zero, uniformly in (t, ω) ; (ii) a deflator exists for the process $\mu(\cdot)$ of relative market weights; (iii) for some regular function **G**, the process

$$\Gamma^{G}(T) - \eta T, \quad T \in (0,\infty)$$

is non-decreasing.

Relative arbitrage with respect to the market exists then over every time horizon [0, T] of finite length T > 0.

. Some quite interesting Probability Theory goes into this proof: support theorem, growth of stochastic integrals. Once again: no strength.

COUNTEREXAMPLES TO THE 2005 QUESTION

THEOREM: There exist time-homogeneous ITô diffusions $\mu(\cdot)$ with values in Δ^3_+ and LIPSCHITZ–continuous dispersion matrix, for which the cumulative excess growth process

$$\Gamma^{\mathcal{H}}(\cdot) \, := \, rac{1}{2} \sum_{i=1}^3 \int_0^+ rac{\mathrm{d} ig\langle \mu_i
angle(t)}{\mu_i(t)} = rac{1}{2} \sum_{j=1}^3 \int_0^+ \mu_j(t) \, \mathrm{d} ig\langle \log \mu_j ig
angle(t)$$

is strictly increasing, with slope uniformly bounded from below by a strictly positive constant $\eta > 0$.

. But with respect to which arbitrage over sufficiently short time-horizons [0, T], with $0 < T \le T_b$ for some real number

$$T_{\flat} \in \left(0, \frac{H(\mu(0))}{\eta}\right],$$

(日) (同) (三) (三) (三) (○) (○)

is NOT possible.

A GAP in our Understanding

We know of course that (strong) arbitrage DOES exist, over all time-horizons [0, T] with

$$T > \frac{H(\mu(0))}{\eta}$$

This leaves a GAP for time-horizons [0, T] with

$$T_{\flat} < T \leq \frac{H(\mu(0))}{\eta}$$

We are now trying to understand what happens for such horizons, and hopefully "close the gap".

Sketch of the Argument

Consider a strict concave, smooth function $G : \Delta^3_+ \to (0, \infty)$, introduce the "cyclical" functions $\sigma_i(x) = D_{i+1}G(x) - D_{i-1}G(x)$ for i = 1, 2, 3 and set

$$L(x) := -(1/2) \sigma'(x) D^2 G(x) \sigma(x).$$

If G has a "navel" c, that is, a point with the property

$$D_1G(c)=D_2G(c)=D_3G(c),$$

then this c is also a global maximum. Away from this navel, we start an ITô diffusion $\mu = (\mu_1, \mu_2, \mu_3)$ with dynamics

$$\mathrm{d}\mu_i(t) = \frac{\sigma_i(\mu(t))}{\sqrt{L(\mu(t))}} \,\mathrm{d}W(t), \qquad i = 1, 2, 3.$$

Here $W(\cdot)$ is a standard, one-dimensional Brownian motion.

This diffusion lives on the lateral face of the unit simplex, and moves along level curves of the function G at unit speed ($\eta = 1$):

$$G(\mu(t)) = G(\mu(0)) - t$$
, $\Gamma^G(t) = t$,

(at least) up until the first time $\,\mathcal{D}\,$ one of its components vanishes. It follows that

The components of this market weight process $\mu(\cdot)$ are martingales, so no arbitrage can exist relative to this market on any time-horizon [0, T] with

$$0 < T \leq T_{\flat} := G(\mu(0)) - g$$
.

Of course, *strong* relative arbitrage IS possible over any time-horizon [0, T] with $T \in (G(\mu(0), \infty)$.

Thus the gap in question, is the interval

$$\left(G(\mu(0)) - g, G(\mu(0))\right]$$

where

$$\mathrm{g} := \max_{x \in \mathbf{\Delta}^3 \setminus \mathbf{\Delta}^3_+} G(x).$$

For instance, with G = H the entropy function, we have

$$\max_{x \in \Delta^3} G(x) = 3 \log 3, \qquad \max_{x \in \Delta^3 \setminus \Delta^3_+} G(x) = 2 \log 2.$$

No such gap exists for concave functions $G : \Delta^3 \to [0, \infty)$ that are strictly positive in the interior of the simplex and vanish on its boundary; e.g., the geometric mean function.

SOURCES FOR THIS TALK

KARATZAS, I. & RUF, J. (2017) Investment strategies generated by Lyapunov functions. *Finance & Stochastics*, to appear.

FERNHOLZ, E.R., KARATZAS, I. & RUF, J. (2017) Volatility and Arbitrage. *Annals of Applied Probability*, to appear.

KARATZAS, I. & KARDARAS, C. (2017) *The Numéraire Property, Arbitrage, and Portfolio Theory.* Book in Preparation.

BANNER, A. & FERNHOLZ, D. (2008) Short-term arbitrage in volatility-stabilized markets. *Annals of Finance* **4**, 445-454.

CHAU, H.N. & TANKOV, P. (2013) Market models with optimal arbitrage. *Available at http://arxiv.org/pdf/1312.4979v1.pdf.*

DELBAEN, F. & SCHACHERMAYER, W. (1994) A general version of the fundamental theorem of asset pricing. *Mathematische Annalen* **300**, 463-520.

FERNHOLZ, D. & KARATZAS, I. (2010a) On optimal arbitrage. Annals of Applied Probability **20**, 1179-1204.

FERNHOLZ, D. & KARATZAS, I. (2010b) Probabilistic aspects of arbitrage. In *Contemporary Quantitative Finance: Essays in Honor of Eckhard Platen* (C. Chiarella & A. Novikov, Eds.), 1-18.

FERNHOLZ, E.R. (1999) Portfolio generating functions. In *Quantitative Analysis in Financial Markets* (M. Avellaneda, Editor). World Scientific, River Edge, NJ.

FERNHOLZ, E.R. (2002) *Stochastic Portfolio Theory.* Springer-Verlag, New York.

FERNHOLZ, E.R. (2015) An example of short-term relative arbitrage. *Preprint*, *http://arxiv.org/abs/1510.02292*.

FERNHOLZ, E.R. & KARATZAS, I. (2005) Relative arbitrage in volatility-stabilized markets. *Annals of Finance* **1**, 149-177.

FERNHOLZ, E.R., KARATZAS, I. & KARDARAS, C. (2005) Diversity and relative arbitrage in equity markets. *Finance & Stochastics* **9**, 1-27.

OSTERRIEDER, J.R. & RHEINLÄNDER, TH. (2006) Arbitrage opportunities in diverse markets via a non-equivalent measure change. *Annals of Finance* **2**, 287-301.

PICKOVA, R. (2014) Generalized volatility stabilized processes. Annals of Finance 10, 101-125. RUF, J. (2011) *Optimal Trading Strategies under Arbitrage*. Doctoral Dissertation, Columbia University.

RUF, J. & RUNGGALDIER, W. (2013) A Systematic Approach to Constructing Market Models With Arbitrage. *Available at http://arxiv.org/pdf/1309.1988.pdf*.

SCHIED, A., SPEISER, L. & VOLOSHCHENKO, I. (2016) Model-Free Portfolio Theory and Its Master Formula. *Available at http://arxiv.org/pdf/1606.03325v1.pdf.*

STROOCK, D.W. (1971) On the growth of stochastic integrals. *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete* **18**, 340-344.

THANK YOU FOR YOUR ATTENTION